Building a solar reticulation system

Reticulation_System

Martin Chape explains how he replaced a power-hungry bore pump with a low-cost solar unit and automated his watering system at the same time.

For some time I’d wanted to get rid of my power-hungry three-phase mains-operated bore pump, used to water my garden from the aquifer beneath my house. This forms part of a bigger plan to move all my 240 volt appliances off-grid. The large power drain of the three-phase bore pump would almost double the size of the inverter I’d need to go off-grid, even though it only gets used in summer, and then for just 15 minutes, three times a week.

So, I decided to replace it with a 24 volt DC bore pump run from solar PV. This pump fills a rainwater tank from the bore, using a float switch to turn the pump off when the tank is full. The resulting system can be completely automated and independent of utility-supplied water and electricity.

The pumps and tank

I ordered a 24 volt DC multistage submersible bore pump (a Kerry M243T-20) from a dealer on AliExpress, for US $178. This pump is class IP68 (fully dust and water tight; see en.wikipedia.org/wiki/IP_Code), has a 25 mm outlet pipe, can pump to a head of 20 metres at 3000 litres per hour and draws 384 watts (at 24 volts that’s about 16 amps).

While waiting for the solar pump to arrive I removed the existing bore pump and sold it for $500. Using that as my starting capital, I hunted down a 2500 litre poly rainwater tank through Gumtree and, with the help of my neighbour, installed it on a brick and concrete foundation. I had first considered building an elevated tank stand, to provide water pressure from the height, but decided against this after reading a story of a home-built stand collapsing on someone. I also would have needed local government approval.

So the tank ended up on the ground and I purchased a second pump to move the water out of the tank to the garden. It’s a 24 volt DC submersible pump (US$35 from another AliExpress seller) with a single impeller (the spinning rotor that pushes the water), a 25 mm outlet pipe, 12 metre head capacity and it draws 120 watts. Oddly, it claims a flow rate of 8000 litres per hour compared to the 3000 litres of the bore pump.

[Ed note: Cheap devices bought directly from China can vary in quality; checking the seller’s feedback score and comments can assist, but as Martin’s experiences show, there can still be issues.]
When this pump arrived from China it had been damaged in transit so I ordered a second one and then contacted the supplier. The supplier was very good and supplied parts which I used to repair the first pump, which is now in my shed as a spare.

The solar bore pump then arrived and with the help of a friend I soon had it installed in the bore. It seemed to work initially, but then stopped after just 10 minutes.
I contacted the supplier in China but they claimed their pumps don’t fail. After many tests and emails, I removed the pump from the bore and made a video of it running in a container of water. The video clearly showed that it didn’t pump water but rather blew out smoke. Only then did the manufacturer agree to replace the pump—if I paid the shipping from China for the new one.

When the replacement bore pump arrived, I installed it in the bore and wired it through the float switch (a boat bilge switch) mounted upside down in the top of the rainwater tank. This switch turns the pump off when the tank is full.

Read the full article in ReNew 131.

Prize ReNew sub banner

×