Do It Yourself

ReNew articles to make home more sustainable

Thermal imaging camera

Energy detectives

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

Knowing that double glazing can be compromised by incorrectly sealed window frames, Jean and Barry Lambert used affordable thermal imaging technology to check and rectify the installation—and find other sources of house heat losses.

LIVING in Canberra’s cold climate you need to think carefully about heat loss. We’ve done work on our house to improve its insulation, glazing and heating system efficiency. But that doesn’t necessarily translate to the best possible thermal performance if there are gaps or weak spots in the insulation—and that’s where we found a thermal imaging camera came in handy.

READ MORE »

Some background on our house

Located in an inner suburb of Canberra, our four-bedroom brick house was built in the 1970s. The major axis runs north–south, with the living area to the west (giving views to the Brindabella mountains) and the bedrooms facing east.

Canberra of course has quite a wide temperature range (it’s in climate zone 7). Outside temperatures on winter mornings can fall below zero, while summers are usually dry and warm.

Canberra’s cold winters dictate that insulation is a priority to reduce heat loss. We insulated the walls with R3 rockwool and we topped up the existing ceiling insulation to an R5 rating. We replaced the original oil heating with ducted gas, and added deflectors on the floor vents to direct hot air away from windows. By varying the airflow rate using the outlet dampers in the floor vents, around a 50 °C outlet temperature is maintained, giving a comfortable 18 °C to 20 °C temperature inside the house.

Read the full article in ReNew 139.

vertical-garden

Straight up: vertical garden design

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

The last thing you want is to spend a lot of money on a vertical garden system and then have it fail. Jenny and Bevan Bates provide advice and inspiration from their own living walls—five years old and growing strong!

THE inspiration to garden vertically is not new. The Hanging Gardens of Babylon, if they are more than legend, may have been an early precursor, built to bring luscious greenery to the ancient city’s terraced buildings. Your grandma’s hanging pots are a more down-to-earth example, as are vines on a trellis.

READ MORE »

More recently, the idea of living walls has become a popular trend, in part in response to higher density living and homes with small gardens. For Jenny and Bevan Bates, their move to a new house with a small courtyard— and a stark black brick wall facing their living area windows—was the reason they started experimenting with gardening on a wall.

“You have to be prepared to experiment,” says Jenny. In fact, their first vertical garden was a failure. “We tried a $100 system, but the pots were too small and it dried out too quickly; it was hard to keep anything alive in it,” she says.

However, they persevered and they now have five vertical gardens providing cooling, colour and herbs, which adds interest to their home. The black brick wall in fact sets off one of the vertical gardens nicely—the colour they didn’t like turned out to be complementary to the planting!

That particular garden was their first success, says Jenny. It’s now five years old and thriving. It’s on a south-facing wall overlooked by the north-facing living area windows—a lovely sight.

They created the garden using Woolly Pockets, a product which at the time they needed to get delivered from the USA (though there are now retailers in Australia).

The pockets are composed of long troughs of recycled polyethylene (PET, from milk bottles for example). That recycled aspect was important to them; “You need to think about the full life cycle; for systems made from virgin plastic, there can be a lot to dispose of at end of life,” says Jenny.

Which plants they use has evolved over time; some plants grew bigger than expected, shaded other plants or didn’t like the position.

Read about their vertical garden in ReNew 138.

permaculture-garden

Reusing building materials in the garden

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

There are many uses for old building materials in the garden to create quirky but useful structures, with the added advantage that the materials don’t end up in landfill. Permaculture gardener and teacher Drew Barr shares his tips.

Bricks

READ MORE »

Bricks are useful objects. Durable and cheap, their regular shape means they can be stacked or laid in patterns. Almost all bricks have the same dimensions, although older handmade bricks may be slightly smaller. The size and shape are designed for easy one-handed handling by an adult.

Bricks are energy-intensive to manufacture and transport, but will last hundreds of years, and can be used over and over again.

When reusing bricks, you’ll need to clean them to remove the mortar. This is dirty and laborious work and seems very slow to begin with, but once you have mastered the knack you will be surprised how fast you can clean bricks. The best tool for this is a scutch hammer, which has replaceable toothed blades called combs. Chip at the mortar where it meets the brick and it will come off in big chunks. Wear gloves and a face shield though as flying mortar chips really hurt.

Broken concrete slabs
Concrete is also a very energy-intensive material to manufacture, and similarly highly durable and strong, and ideal to reuse.

Concrete slabs, sometimes referred to as ‘urbanite’, can be reused to make crazy paving, or stacked without mortar to form low retaining walls. When sourcing slabs make sure you get only non-reinforced slabs such as from council footpaths or old driveways. Reinforcing steel in the concrete is very difficult to cut, and as it rusts it will swell up and split the slab.
Councils often replace footpaths and must dump the slabs of concrete they remove, and they will usually be happy to dump it at your place for free.

Read more on reusing old concrete slabs, clay pavers, roofing tiles, roofing iron, car panels, bathtubs and more in the full article in ReNew 138.

pressed-earth-bricks

DIY earth bricks

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

Creating pressed earth bricks isn’t hard when you have a machine and willing helpers. John Hermans describes the process and advantages of this low embodied energy approach to construction.

THIS article aims to inspire owner-builders to minimise the carbon footprint of their new sustainable dwellings by using pressed earth bricks. By explaining the many virtues of this building material, I hope to spark interest in my offer to share the amazing machine that I use to make them.

READ MORE »

I started making and using pressed earth bricks in 1988, shortly after commencing excavation for our house site. I had seen a hydraulic brick press working very effectively around this time and, with the intent of making a copy, I took several photographs of it in operation. I then found four aspiring owner-builder friends who were willing to become ‘shareholders’ and finance the brick press fabrication; my input was to build it.

The machine I built back then is still going strong today. To date, this press has made in excess of 70,000 bricks and has been responsible for some very creative, cost-efficient and low embodied energy housing.

A pressed earth brick is simply a brick made by compacting soil that has a high percentage of clay. The machine compacts the soil by 50% using the power of a hydraulic press. The result is an attractive and easy-to-use brick that needs no firing and can often be made from subsoil excavated from the house site— and thus has much lower embodied energy than the average house brick.

My machine makes bricks that are 300 mm long by 220 mm wide by approximately 130 mm high, so quite a bit larger than the average house brick (dimensions 230 x 110 x 76 mm). The height of the brick depends on the amount of clay mix put into the press, but averages around 130 mm. At that size, the brick ends up weighing around 15 kg.

It is important to seal the bricks to prevent surface erosion. There are many earth brick sealing products available now (e.g. Your Home suggests linseed oil and turpentine; or you can use one of the Bondall products).

Quality bricks are achieved by using a clay-based subsoil that will bind well and dry hard. This is often an excavation waste product, with little commercial value. Using a press to make several test bricks is a sensible idea.

An addition of 5% to 10% cement will form a brick that will handle days of total water submergence, although this is a condition rarely encountered! No cement is needed in the mix if the bricks are used indoors. If used in exterior walls that are likely to be impacted by rain, then the use of cement is recommended.

Read the full details in ReNew 138.

making_strawbales

A house built of straw

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

You’re unlikely to go from building newbie to strawbale expert after a four-day workshop, but you should come out with basic skills, a better understanding of the process and the ‘right’ questions to ask. Enga Lokey explains.

THERE are many good reasons to choose to build with strawbales—better thermal performance, non-toxic material, agricultural waste product, low embodied energy, very high levels of insulation, beautiful curved walls, etc. But once you have made this decision, it may be difficult to find an architect, engineer and builder to provide the assistance you require in working with this unique medium.

READ MORE »

One of the best ways to give yourself the knowledge and skills necessary for a successful build is to do a strawbale workshop. If you have no prior architectural or building experience, a workshop won’t prepare you to undertake your own project from start to finish unassisted; however, you will be able to gain enough understanding to ask the right questions of the professionals you choose to employ and also gain basic strawbale building skills yourself.

What should you look for and what should you expect from a workshop? At the most basic level, participation in a workshop should provide you with enough of an understanding of what you are getting yourself into to confirm your convictions or prompt a reconsideration of your building plans. Additionally, most workshops will give you hands-on experience with some of the unique aspects of building with bales, such as alternative framing techniques, bale tying, stacking walls and corners, prepping for render and rendering.

There is a huge variety in the offerings available. Before signing up for a workshop, ask yourself what you are looking to achieve and what level of participation you plan on having in your own project. The more you expect to do yourself on your own house, the more detailed and precise your level of understanding needs to be. Are you just interested in understanding the process so you can decide if this is the type of house you want to build? Are you interested in the theory and principles of good strawbale design? Do you want to participate in every aspect of the building process or just help with the bale walls and rendering? Asking yourself these questions will make it easier to pick the correct one. Some of the major differences between courses are discussed below, followed by a chart that tries to summarise the various options on offer.

Read the full article in ReNew 136.

Q&A: DIY double glazing effectiveness

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

Q

It was an interesting article about double glazing by Alan Cotterill in ReNew 135. However, I am led to believe that double glazing relies on a vacuum between both sheets to be effective. How did Alan achieve this? Was his objective to cut down sound only? Double glazing is certainly a good idea, particularly where I live in the Blue Mountains, but I don’t have it because of cost.This is why the article interested me, but I doubt its effectiveness for retaining warmth.
—Rod Marshall

A

READ MORE »

Double glazing doesn’t rely on a vacuum, it uses an air gap of a particular width that is wide enough to provide a level of insulation and narrow enough to prevent convective currents in the air between the two panes which would transfer heat from one pane to the other. Many double-glazing units use inert gases such as argon between the panes, as it is a better insulator, but there’s not that much difference between argon and air, so DIY double glazing can work quite well compared to single-pane windows.

There are vacuum window units, although I don’t know of anyone making them here in Australia; possibly Pilkington has their Spacia units available. You can’t produce a vacuum between two unsupported flat panes of glass as external air pressure would press the panes together and possibly shatter them. In vacuum-insulated windows they use many tiny posts between the panes to provide the support for the glass, but obviously this sort of window will not be perfectly clear although it comes close. The space between the panes is much smaller for vacuum glazing than with gas-filled double glazing. For example, Pilkington’s Spacia units have a 0.2 mm gap compared to at least a 6 mm for gas-filled units.
—Lance Turner

14745433137_81d2c78842_k.jpg

Wicking beds: Irrigation from the ground up

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

Seven years ago, when permaculture design consultancy Very Edible Gardens began, they had no idea what a wicking bed was. After repeated queries from clients, they started to research and experiment. Dan Palmer, co-founder of VEG, shares the fruits of their labour.

Prior to our foray into wicking beds, all of our raised vegie beds were either unirrigated or set up with drip irrigation. But then someone whispered these words to us: “Wicking beds… We want wicking beds.” So we started setting up wicking beds in old bathtubs, and using plastic liner in standard raised beds. We set out to learn by doing, our initial intention to prove to ourselves that wicking beds didn’t work. We gave it a pretty good shot, learned a lot in the process and refined how we went about them—a good example of iterative design, where you keep doing what’s working and improve what isn’t, then repeat.

READ MORE »

What is a wicking bed?

Invented by Australian Colin Austin, the wicking bed idea involves the prevention of water loss from your garden bed through the use of a waterproof liner or layer. This creates a reservoir of water beneath the soil and means that, instead of watering from above via drip irrigation, a hose or a watering can, the water wicks up into the soil from below.

This keeps the soil nice and moist. You prevent the weight of the soil from squashing all the water out by having the water sit in a layer of small stones, sand or similar, which can accommodate the water while bearing the weight of the soil. You prevent the soil from dropping down into gaps between the stones or sand particles with a layer of something that lets water wick up, but stops soil moving down. The last essential piece of the wicking bed puzzle is that you need a designated overflow point so that the soil layer doesn’t get flooded and kill the soil life and plants by rotting their roots.

Read the full article in ReNew 135.

DIY double glazing

Double glazing on a budget

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

Double glazing can be very expensive, but with a bit of care and patience you can add double glazing to existing windows without breaking the bank. Alan Cotterill shows us how.

Built in 2002, my four-bedroom brick veneer house has stock standard powder-coated aluminium windows and doors. With my previous efforts to retrofit for energy savings and thermal comfort (see ‘Efficiency on a budget’ in ReNew 130), I had already fitted effective shading for my windows in the warmer weather. As I understand it, this is a prerequisite if double glazing is not going to be counterproductive in summer. But for winter, double-glazed windows insulate and thus hold in the heat much better than a single-glazed pane. Thus, I embarked on a project to retrofit my windows with a second (acrylic) pane.

READ MORE »

Materials
For the additional panes, I used 3 mm cast acrylic sheet accurately cut to size commercially by The Plastics Factory. They cut 34 panels within a tolerance of 1 mm to my requested dimensions. Accurate measuring by myself was of paramount importance for this! Buying direct from a wholesaler meant a good saving; in fact, the cost was around half that of uncut sheets from local retail outlets.

I adhered the acrylic sheet to the aluminium surrounds of each panel of glass using highly flexible silicone sealant. The reasons for this choice were two-fold.

Firstly, the linear expansion rate from a change in temperature is significantly different between the acrylic sheet and the aluminium frame, with the acrylic expanding at three times the rate of the aluminium. With a 1200 mm edge and a temperature change from 0 to 40 °C, the acrylic would expand nearly 4 mm more than the aluminium frame. Flexibility of the sealant would cater for this to some extent.

Secondly, if a glass panel needs replacing down the track or a return to single glazing is desired, the silicone sealant could be scraped off (although still a tedious, fiddly job!)

Read the full article in ReNew 135.

134_seed_trays

Small things matter too: Simple reuse DIY projects

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

In everyday life we are surrounded by materials that are usually thought of as rubbish. But most can be reused for other purposes with a little DIY effort.
By Lance Turner.

We hear a lot about reduce, reuse and recycle and, while most people make an effort with basic recycling, the first two parts—reduce and reuse—are really more important.

READ MORE »

Reducing is simply a matter of choices—if a product comes in too much packaging or non-recyclable or environmentally damaging packaging materials (read plastic), then simply look for an alternative that is better packaged.

While it’s great to be able to reduce your waste load by careful shopping, some products are simply not available in anything other than plastic or plastic composite packaging. You can opt to simply not buy the product at all, but a particular product may be a requirement, for example, for health reasons, or it might be required for your job.

Given that most people will end up with at least some packaging that local recyclers don’t take, the best option is to try and reuse the material. This has two advantages—it reuses rather than recycles, and it offsets the purchase of new materials/products that would otherwise be bought for that purpose. It’s not just packaging that can be reused, there are many other sources of useful materials, from pallets to old electronic devices.

So just how can you reuse items that might otherwise seem like they have no use? In most cases, just a small amount of effort and DIY skill is required. On the following pages we present a few ideas that are simple and effective, and quite obvious once you see them.

Read the full article in ReNew 134.

container parents retreat

Storage, study, sleeping: Container convert

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

Tammi Jonas is definitely a convert to container homes. Motivated by reuse and sustainability, their light-filled container conversion has also proved a joy to live in. Here she describes the conversion process.

In May 2011, we had a moving/storage/accommodation challenge. We needed to move all our material trappings from Melbourne up to our new farm near Daylesford, but store them for four months while we traipsed across America, and then accommodate our growing (vertically, not numerically) family in a small three-bedroom house on the farm. The obvious solution was a shipping container for all three jobs.

READ MORE »

That’s how we came to buy a used high-top 40-foot (12 m x 2.4 m, 2.9 m high) container (from eBay) rather than simply hiring one to do our move. It cost us $2500, plus $500 to get it delivered to us in the suburbs and then hauled up to Daylesford.

The day the container arrived, we watched in trepidation lest the truck’s cranes broke the low wires overhead. Then we filled it up, to the top, grateful we would have an enormous shed at the other end to supplement our new little house.

Our intrepid truckie, Bluey, arrived to collect the now-heavy container, and drove it through the rain and up our slippery, narrow driveway onto the farm. I held my breath the entire time, certain there was a very expensive towing bill in our near future. But Bluey was amazing, and our life’s treasures were planted carefully in front of the shed to wait out the winter while we gallivanted off to a life-changing northern summer.

A full season later, we returned to commence our new life as farmers. Our design for the interior of the container was inspired by the RockVan (a 1977 GMC motorhome) we’d used on our holiday in the USA. The RockVan has terrarium-like windows that made us feel constantly connected to the outside world. I wanted my bed’s placement to replicate the RockVan pleasure of waking to the gentle visage of trees and sky.

I had imagined cranes and costs and the stress of working with contractors to move the container into position as our new bedroom/office with ensuite, but my partner Stuart had better ideas. All we had to buy were some pine fence posts, which we needed anyway for, well, fencing, and borrow Stuart’s folks’ 4WD.

Stuart dragged the container into place, using eight round fence posts as rollers. In total, he had to move it about 50 metres, and 90 degrees. He then jacked it up and put pad footings with brick piers under each corner.

The building commenced in earnest then, with the roof we pulled off the house’s superfluous, low carport becoming a feature on the container—and reducing the heat load on its roof.

Stuart bought double-glazed, aluminium-framed windows and doors direct from China, for both this and a second guest container. The windows in fact arrived in the soon-to-be guest container! The total cost was around $5500, including delivery, of which about $3500 was for the container.

Dealing directly with Chinese suppliers meant the windows were much cheaper, but it can be tricky, as quality can vary and the logistics require a lot of knowledge and time. However, Stuart already had 10 years experience dealing directly with Chinese companies, so for us this went smoothly.

Read the full article in ReNew 133.

Transformers

Downlight transformers: The good, the bad, and the very inefficient

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

Not all halogen downlight transformers are created equal when using them with retrofit LED globes. Alfred Howell explains how the wrong transformers can be costing you money.

With the retrofitting of LED downlight bulbs to MR16 halogen fittings, households have seen great efficiency gains and cost savings.
However, if you change your bulbs to low-power LEDs but don’t check the transformers, you may be wasting energy. Many of the older downlight fittings use ferromagnetic (iron core) transformers. While simple, they are inefficient compared to modern electronic replacements. To determine the extent of losses in these transformers I performed some simple testing.

READ MORE »

Testing and results
I tested a typical ferromagnetic transformer alongside an Osram Redback electronic transformer. Both transformers were tested, with and without a Brightgreen DR700 retrofit LED globe. A Power-Mate Lite energy meter was used to measure power draw.


Type No globe, or globe blown 10.5W globe fitted

Ferromagnetic 5.34W 18.23W

Electronic 0.38W 13.13W

Savings 4.96W 5.10W

Table 1. Energy consumption of electronic versus ferromagnetic transformers,
with and without a load (globe) fitted.

 

As can be seen in Table 1, the electronic transformer performs well with or without the globe. While it seems a bit pointless to test a transformer without a globe fitted, it’s actually a good indicator of the efficiency, or otherwise, of each transformer. Compare the electronic transformer’s 0.38 W draw without a globe with the ferromagnetic transformer’s draw of an extra five watts. Indeed, the ferromagnetic transformer uses an extra five watts more than the electronic transformer with or without the globe’s load.

While that doesn’t sound like much, it’s not uncommon to find 20 or more downlights in a home. With all 20 lights on, that would be an extra 100 watts burning a hole in your wallet—or 0.5 kWh if they’re on five hours a day.

Solutions and options
To reduce this energy use, the cheapest option is to swap the ferromagnetic transformers for electronic ones when you retrofit. They are low cost, usually under $15, and available from electrical wholesalers and lighting stores. Alternatively, you could upgrade the halogen fittings to dedicated LED downlight fittings with an incorporated driver.

An even better option is to remove the downlights altogether in places where suitable. Downlights compromise ceiling insulation as they must be uninsulated to prevent the fitting from overheating. Also, many downlights, even LED ones, have a fairly narrow beam angle and so tend to produce pools of light. To get high ambient lighting levels requires a greater total wattage from downlights or a light fitting with a wider dispersion, such as an oyster fitting.

It’s clear that changing the globe as part of an energy saving makeover is only part of the solution. For maximum efficiency and results, the whole lighting system, and how the system is used, needs to be evaluated. This includes behavioural changes such as turning lights off when not in use. With a bit of effort, you will be amazed at the savings that can be realised.

Alfred Howell has years of experience managing complex machines, which he reckons puts him in a terrific position to understand how we can work as part of this complex machine we call Earth.

For more great articles like this buy ReNew 133.

132_cooking

Cooking Challenge: ReNew enters the kitchen

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

For our recent cooking challenge, we asked ReNew readers how they’re reducing their energy use in the kitchen. In true ReNew fashion, we got entries addressing the problem from a range of DIY angles.

As Alan Pears highlighted in ReNew 130, while the kitchen is a small part of energy use in the full food system, it can be a significant part of household energy use, particularly for low-energy-use households. From improving our understanding of the energy efficiency of appliances and cooking techniques to improving the insulation in saucepans, Alan presented a range of things to think about when you get into the kitchen.

READ MORE »

The entries in our competition reflected that. Several tackled the topic by looking at equipment, with pressure cookers, solar ovens and haybox cooking featuring. Several looked at techniques, such as not cooking with a half-empty oven, defrosting food in the fridge (or on the bench) and even cooking multiple things in a stack of pots, to use the escaping heat.

And the winner is…
The ATA crew particularly like Jan Heskes’s entry, making that our winner: it’s a practical, simple approach to reducing energy use. We’ve included the winning entry in full, along with parts of several other entries that reflect the range of responses. Jan wins a GoalZero portable solar USB charger kindly donated by Laughing Mind and valued at $169.

WINNER:
Never cook with a half-empty oven
Jan Heskes

Much as we would like to, we cannot always afford to have the latest energy-efficient appliances in our home. However, by using what we do have more thoughtfully, we are still able to significantly reduce our energy consumption.

Our kitchen contains a standard-sized stove with a fan-forced electric oven and gas cooktop. The stove is a few years old and would have been energy efficient for its time. Before turning on the oven I plan and prepare as many dishes as possible to bake while the oven is heated. Surplus food produced is stored in the freezer for future meals. The freezer is also used efficiently by avoiding operating partially empty. With ongoing planning, food is defrosted passively and reheated either quickly in the microwave or, if possible, in conjunction with accompanying dishes. As a result the oven is generally only used about once a week in our house even though nearly all of the food we consume is homemade.

Read the full article in ReNew 132.

132_solar_heating

Low cost solar heating: Using free heat from your roof

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

After reading an article in ReNew, Alan Cotterill decided to design a closed loop heat exchange system to supplement his home’s heating with free heat from the roof. A couple of iterations later, he describes the resulting effective system.

In early 2014 I commenced efforts to use the heat from our roof cavity to contribute to winter heating. I decided on a closed loop system, which would take in room air, duct it through the roof and return it to the house at a higher temperature. A closed loop system avoids the issue of drawing down insulation fibres and dust from the roof cavity.

READ MORE »

Useful attic temperatures
My home combined with our very cold but sunny winter days in Wagga seemed especially suitable for this system to run with reasonable efficiency. The house has a grey Colorbond steel roof and a large roof area relative to the internal floorplan, due to a high pitched roof and the wide verandahs and garage being included under the main roof structure. The east-west orientation of the long axis of the house and the north-facing roof area being covered with solar panels have not prevented useful attic temperatures. Measured 60 cm below the peak of the roof cavity, the average maximum attic temperature was 28 °C for the two weeks starting 16 July 2014 and 37.8 °C for the two weeks from 19 August 2014.

A first attempt
My first prototype forced room air through a system of ducts in the roof using a centrifugal exhaust fan mounted on its side on a shelf in the laundry. The air was distributed to three 12-metre runs of 100 mm flexible aluminium ducting before returning the air to the house. The returned air was reasonably heated but the total volume of returned air was inadequate to contribute significantly to winter heating.

Read the full article in ReNew 132.

Reticulation_System

Building a solar reticulation system

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

Martin Chape explains how he replaced a power-hungry bore pump with a low-cost solar unit and automated his watering system at the same time.

For some time I’d wanted to get rid of my power-hungry three-phase mains-operated bore pump, used to water my garden from the aquifer beneath my house. This forms part of a bigger plan to move all my 240 volt appliances off-grid. The large power drain of the three-phase bore pump would almost double the size of the inverter I’d need to go off-grid, even though it only gets used in summer, and then for just 15 minutes, three times a week.

READ MORE »

So, I decided to replace it with a 24 volt DC bore pump run from solar PV. This pump fills a rainwater tank from the bore, using a float switch to turn the pump off when the tank is full. The resulting system can be completely automated and independent of utility-supplied water and electricity.

The pumps and tank

I ordered a 24 volt DC multistage submersible bore pump (a Kerry M243T-20) from a dealer on AliExpress, for US $178. This pump is class IP68 (fully dust and water tight; see en.wikipedia.org/wiki/IP_Code), has a 25 mm outlet pipe, can pump to a head of 20 metres at 3000 litres per hour and draws 384 watts (at 24 volts that’s about 16 amps).

While waiting for the solar pump to arrive I removed the existing bore pump and sold it for $500. Using that as my starting capital, I hunted down a 2500 litre poly rainwater tank through Gumtree and, with the help of my neighbour, installed it on a brick and concrete foundation. I had first considered building an elevated tank stand, to provide water pressure from the height, but decided against this after reading a story of a home-built stand collapsing on someone. I also would have needed local government approval.

So the tank ended up on the ground and I purchased a second pump to move the water out of the tank to the garden. It’s a 24 volt DC submersible pump (US$35 from another AliExpress seller) with a single impeller (the spinning rotor that pushes the water), a 25 mm outlet pipe, 12 metre head capacity and it draws 120 watts. Oddly, it claims a flow rate of 8000 litres per hour compared to the 3000 litres of the bore pump.

[Ed note: Cheap devices bought directly from China can vary in quality; checking the seller’s feedback score and comments can assist, but as Martin’s experiences show, there can still be issues.]
When this pump arrived from China it had been damaged in transit so I ordered a second one and then contacted the supplier. The supplier was very good and supplied parts which I used to repair the first pump, which is now in my shed as a spare.

The solar bore pump then arrived and with the help of a friend I soon had it installed in the bore. It seemed to work initially, but then stopped after just 10 minutes.
I contacted the supplier in China but they claimed their pumps don’t fail. After many tests and emails, I removed the pump from the bore and made a video of it running in a container of water. The video clearly showed that it didn’t pump water but rather blew out smoke. Only then did the manufacturer agree to replace the pump—if I paid the shipping from China for the new one.

When the replacement bore pump arrived, I installed it in the bore and wired it through the float switch (a boat bilge switch) mounted upside down in the top of the rainwater tank. This switch turns the pump off when the tank is full.

Read the full article in ReNew 131.

14-11-30 3 Batt charger inverter

Going off-grid slowly: a DIY project

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

Stan Baker dreams of ditching his energy company and going off-grid. He explains how he aims to achieve this, one step at a time.

The well-documented ‘gold plating’ of the poles and wires networks has meant rising service fees for consumers despite falling demand for delivered energy. My own electricity bills reflected this and caused me to seriously consider leaving the grid altogether. A further consideration was the increasingly disruptive weather being experienced around the country resulting in power outages caused by high winds and electrical storms. When attempting to be energy independent, however, the problem is the high cost of the batteries and other equipment necessary to generate and deliver electricity.

READ MORE »

Being something of a DIY type, I considered what bits I had sitting around in my garage and what expertise I might have that could be relevant. A passion over the years for converting hybrid cars to plug-in hybrids meant I had a reasonable understanding of lithium batteries, including the management electronics needed to ensure their longevity. I also had a 1.5 kW, 12 VDC Latronics inverter acquired years earlier for some long-forgotten project. Naturally, I had the usual nerdy stuff such as miscellaneous electronic parts as well as some understanding of microcontrollers.

In effect, I had much of what was needed to deliver 240 VAC off-grid, but with one question unanswered: where was the input energy to come from?

First attempts

My house has a flexible pricing plan from Origin that provides cheaper electricity between 11 pm and 7am. This meant I had a lower cost source of electricity for charging the batteries, at least for initial trialling. So, about six months ago I put together a simple system using lithium iron phosphate (LiFePO4) batteries from an electric vehicle conversion that were down to around 50% of their original capacity and therefore unsuited for vehicular use.

The battery charger was a simple linear unit that used toroidal transformers. I had my fuse box modified so that the lights in the house could be powered either from the inverter or directly from the mains.

The original system was not particularly efficient and I estimated I was losing around 50% of the incoming energy, mainly due to the battery charger. However, it did keep my lights going during most nights and encouraged me to consider a more sophisticated battery storage system.

Read the full article in ReNew 131.

130_house_retrofit

Efficiency on a budget: Easy, low-cost retrofitting

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

Alan Cotterill takes us on his journey retrofitting a standard brick-veneer home for energy savings.

Eleven years ago we bought a near-new four-bedroom brick-veneer house in Wagga Wagga, an inland town in NSW, in an area that experiences hot summers and cold winters.

READ MORE »

It’s a fairly standard house for the area, set on a concrete slab, with a verandah running the length of the eastern side. The house is long and narrow, on a north–south axis, with only the double garage facing north. Excluding the double garage and verandah, the house size is 183 m2 and the window area is 19% of the floor area.

R3.3 batts were already installed in the ceiling, along with reflective foil in the walls and under the colorbond roof. We found that an evaporative cooler provided effective summer cooling on most days and later-fitted gas central heating provided winter heating, albeit at a cost.

There were several areas, however, where we found we could significantly increase comfort and decrease bills, through simple retrofits. Some of these are detailed below, including information on any issues we encountered and how we overcame them. Hopefully this will be of assistance to others planning similar retrofits.

Downlight gaps

The house’s original lights were 12 V, 20 W halogen downlights. A 30 cm clearance without insulation batts is required around each downlight to guard against overheating and fire. There were 18 halogen downlights, meaning 18 gaps in the insulation. Thus, there was about 6 m2 of ceiling without insulation.

So, four years ago I did a simple changeover from 20 W halogen globes to 3 W LEDs ($15 each at the time), using the existing fittings and transformers. I later covered each downlight with a downlight mitt ($18 each) and, ensuring that all transformers were held above any insulation to prevent overheating, I filled in the insulation gaps up to the mitts.

Each mitt comes with a wire support to secure it to the plasterboard and a wire tower to secure each transformer above the mitt and batts. Installation of the mitts was easily done from below, standing on a ladder. Because they are soft, you can simply collapse them, insert them through the hole for the light fitting, and open them up inside the roof cavity and position them over the hole. Then you just push the light fitting back in place, as they are held in the ceiling with spring clips.

The main energy saving wasn’t from the significantly lower wattage for lighting, but from the improved ceiling insulation, which reduced energy costs, especially from winter heating.

There were some problems, however. The original transformers were designed to run with a higher wattage than the 3 W LED globes I used, resulting in some flickering and some transformers failing. With what is available today, I would, instead, plug in an entire new 12V LED downlight unit, which includes a matched transformer ($28 from a specialist electrical trade/retail outlet).

Also, the 3W LED bulbs were bright enough for general socialising, but a little dim for reading. We’ve since added newer 8 W LED bulbs selectively, such as over a chair used for reading or over a work area in the kitchen. Not only is there now plenty of light, but the beam angle of 95 degrees (rather than a narrow 33 degrees) gives wider and more even illumination.

The choice of downlight mitt also needs to be considered carefully. Mitts need to be matched to the type of light fitting and may need a ventilation hole. Mitts without ventilation holes can be used with fittings of the gimble type, where the light can be tilted in its fitting. This tilting action requires a small circular air gap, flush with the ceiling, and this allows some ventilation around the bulb. But, where fixed fittings are used, mitts with ventilation holes are required. We used mitts with ventilation holes to avoid any risk in the future; for example, a new homeowner could unwittingly replace a gimble fitting with a fixed fitting.

Read the full article in ReNew 130.

run on sun

Winter Energy Challenge

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

We asked ReNew readers how they are reducing their winter energy use. We received some interesting and novel ideas—here is the winner!

We had many great entries from ReNew readers for our Winter Energy Challenge, from the simple to the complex, from a single lifestyle change to an entire lifestyle choice (see Karen Cheah’s excellent presentation at www. bit.ly/YZ0dYe).

READ MORE »

The ATA crew particularly like the Trombe wall that replaces conventional heating in the home, making John S our Winter Energy Challenge winner. Read all about his trombe wall below.

John will receive a portable ‘Sydney Tube’ solar BBQ from Run on Sun worth $550.

WINNER—John’s Trombe wall

John S 

I had this idea for a solar heater many years ago, and thought if I ever built a house it would be a main part of the energy efficient design. Well, I had been beaten to the idea by a guy named Trombe—so it won’t be named John’s wall!

 

John used black painted corrugated steel to make a trombe wall to heat his home in winter.

 

Trombe made it using glass, but mine uses black painted corrugated steel. The principle is based on getting the sun to heat a cavity, with the warmed air thermosyphoning into the building. I had the advantage of computer fans to make the extraction of the warm air more efficient. The air enters the house through five vents.

The black corrugated steel wall is 2.4 m high and about 12 m along a 20 m north-facing wall. Windows break up the sections. The wall is 15° west of north facing. A veranda shades the wall to varying degrees, but completely from November to April.

The best winter days are clear, calm and cool. As soon as the sun hits the black wall it starts to warm, and by 11 am the air coming from the vent will be 28° C and as high as 49.7° C at 3 pm. I have saved running the reverse cycle air conditioner and still keep warm; saving money and the planet.

We’ll share more great entries with you over the coming weeks, or read the full article in ReNew 129.

fridges caravans

Fridges for caravans

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

Collyn Rivers looks at simple ways to improve the performance of fridges in caravans—particularly important when they’re running off batteries.

The energy use and cooling performance of fridges installed in caravans and motor homes is related more to installation than technical differences between the fridges. Few are fitted as makers advise, leading to increased energy draw and hence cost; this also applies to domestic fridges, many of which are enclosed on three sides and inadequately ventilated.

READ MORE »

Fridges are simply boxes from which heat is removed from inside the cabinet and dumped outside. It is vital this dumped heat is removed effectively. Owners, many builders, carpenters and even some electricians perceive fridges as ‘back to front’ ovens that generate cold. This approach often leads to ventilation being ignored, resulting in poor installation—the bane of fridge makers.

Ventilation vital

All fridges require adequate ventilation spaces at their rear. However, that alone is not enough. Cool air must be routed to flow unhindered over the cooling coils (also called fins) and the heated rising air must be routed to where it cannot heat the fridge again. With caravans, this is outside the van, and for homes, it is also preferably outside. This is often poorly done in RVs, and all but ignored for self-installed domestic fridges.

Most caravan/motor-home fridges have rear-coil cooling. For this to work, cool air at the fridge base must be directed to flow over the coils. This is assisted by baffles (flat plates inserted into the airflow to change its direction and make it more effective); even baffles made from cardboard will work well. A high exit for the warmed air provides enough suction to draw in cool air.

With such fridges, adding more insulation on their sides, top and (if feasible) to the door also helps hugely. Even 100 mm is not overkill.

Skin ventilating

Some caravan and domestic fridges dissipate heat from their outer skin; these fridges have an enclosed back without cooling coils. These need a 50 mm side gap and ideally the top area should be vented to the outside. Cool air needs to be directed to the base of their sides, and back if it is used for heat dissipation (you can tell which sides are used for heat dissipation as they will get warm when running). Obviously, you must not insulate the sides and/or back of this type of fridge!

Chest fridges need provision for cool air entry, and ideally nothing located above them to roof or domestic ceiling height. Some have a fan that draws cool air in via vents in their sides and over the compressor’s associated cooling fins.

Chest fridges with coil cooling are aided by adding insulation. However, a few (such as the Indel and Ozefridge) dissipate heat from their side walls and so need a minimum 50 mm gap around the walls.

Collyn Rivers has published several books on solar electrical systems and caravanning. Visit Caravan and Motorhome Books

Read the full article in ReNew 129.

IMG_5557 400px

No wires and too much power!

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

Kevin White describes his off-grid home in Queensland as a renewable energy ‘power station’, with more energy than they can use!

It all began with eighty-three acres in southeast Queensland, an almost clean slate, up for sale by a good friend who’d fallen in love and was emigrating. Suddenly we had acquired a property with a bit of everything— dairy pastures running out to steeply treed hills, peaking at a ridge before descending into remnant rainforest; a 300-foot hill rising from the flats completes the picture.

READ MORE »

Buying the property was the easy bit; deciding what to do with it was more evolution than plan. The flats had been used for grazing so we decided to continue that. In went cattle yards and a reasonably large shed—your shed can never be big enough! We decided to build a studio within the shed as temporary accommodation while we planned our build.

As ex-yachties who’d swallowed the anchor for the country life, we knew we wanted to maintain our independence. The ‘reasonably large shed’ had plenty of roof area to supply a water tank and there was plenty of fallen timber nearby for heating.

We wired the studio for both 12 and 240 volt power. We had no idea where on the property we wanted to build so we didn’t consider getting a quote for grid power at the time. However, we did get a telephone connection put into the shed.

At that time (just a few years ago!), solar panels were a rather costly item, so for our interim system we decided to mount four 80 W panels on a frame and have them track the sun for peak efficiency, along with using an MPPT charge controller and 400 Ah of Trojan T105 batteries.

Being an ex-electronics tech I built the tracking system—from an old C-band satellite dish mount, coupled to a homemade trackin  controller. ‘Noddy’ did his duty, day in and day out. We were always delighted when guests asked, “Did your solar panels just move?”

With 12 volt LED lighting, a modest 12 volt fridge/freezer, 12 volt entertainment devices, a laptop and a pot belly stove (with a year’s worth of cut timber), my tolerant wife Gudrun spent over a year living in our temporary home while I went to work in Antarctica for a year.

Read the full article in ReNew 128

vy wormfarm 400px

A DIY no-care worm farm

Share : Share on FacebookShare on Google+Pin on PinterestTweet about this on Twitter

Discarded plaster or paint cans get put to good use in Valerie Yule’s simple and cheap worm farm.

This simple design for a homemade worm farm is rat-proof and fits a small shady space. It suits a family of four, as the worms eat the kitchen scraps so fast!

READ MORE »

All you need are two empty plaster or paint buckets or cans, often thrown out from building sites, and two cheap plastic garden sieves. Builders and plasterers at a building site will usually be happy to give you the used cans rather than throw them into a rubbish skip.

Place one can in a depression in a shady space on damp ground. Put a sieve on top. Cut the bottom from the second can. Place the can on the sieve. Top it with the second sieve (if there are very clever rats around, weight this sieve with half a brick, so vermin can’t lift it).

The sieves stop rats, mice and blowflies getting in, but allow worms perfect freedom to come and go.

Start off the worm farm by putting some damp earth with a few worms into the top can. They will multiply quickly, so there is no need to buy worms.

Read the full article in ReNew 128