Solar + battery trial in NZ

The system is entirely contained in one cabinet - except for the solar panels, of course!

Combining PV and battery storage is often touted as a win-win for householders and energy distributors, eliminating peak demand and providing a way to better use the solar generation on-site. Lindsey Roke shares his household’s experience with a trial initiated by his local lines company in Auckland, New Zealand.

In late 2013, our power lines company initiated a PV and battery pilot scheme for households in the Auckland region. The aim was to test how PV combined with batteries could be made to work to the advantage of both householders (by reducing costs and providing backup energy in the case of grid outages) and the grid (by providing additional energy to the network, reducing peaks and providing a way to optimise PV integration into the network).

My wife and I decided to get involved in the scheme and in late January 2014, Vector (the lines company) installed a PV system with battery storage at our house. Almost two years on, there have been issues along the way, but overall it’s been a useful field trial, both for Vector’s and our understanding of the complexities of running such a system.

A new lease on energy
Vector offered the system with an installation cost of NZ$2000 and a monthly rental in proportion to the solar PV system size. Three PV system sizes were available—3 kW, 4 kW and 5 kW—each combined with a lithium iron phosphate battery of 11.6 kWh, and a 4.5 kW inverter (de-rated to 4 kW for enhanced reliability). We opted for a 3 kW PV system and a rental period of 12.5 years. For this sized system and rental period, the monthly rental (for 150 months) was NZ$70, covering maintenance and support. At the end of the lease we will own the panels, but Vector will remove the inverter and battery. Given the technology changes likely over that time, we thought this would be a reasonable option.

Of 290 installations in the pilot, ours was the 150th to be completed.

For us, the primary motivation was to shift to net zero energy (or better). Having designed and helped build our all-electric house in the 70s, we have since made a variety of efficiency upgrades including electric-boosted solar hot water (described in ReNew 97), energy-efficient lighting, a high efficiency space heating heat pump and upgraded under-floor and ceiling insulation (the walls were insulated from day one). Our average consumption is now about 7.4 kWh per day, for two of us and a some-time boarder (he’s a flight steward and often away).

When it came to sizing the PV installation, we wanted to cover this energy consumption, but weren’t necessarily expecting to save money over what we would otherwise have paid for electricity. Given our location in Auckland (at a similar latitude to Bendigo in Victoria), a correctly oriented unshaded PV array would be expected to generate an average of 4 kWh per day per kilowatt installed. Thus, we predicted that even the smallest system offered, 3 kW, would make us net exporters over a year, generating around 12 kWh per day on average.

Read the full article including issues and results in ReNew 134.

EOFY ReNew 2017