Making batteries viable

making_batteries_viable

Julian de Hoog and Khalid Abdulla explain how energy consumption and weather forecasting can improve the financial equations for domestic energy storage.

Many residential householders are now exploring the possibility of installing energy storage in their homes to reduce their electricity bills and better manage their energy needs (see ‘Energy Storage Market Heats Up’ in ReNew 135). This is true in particular for solar PV owners currently benefitting from feed-in tariffs that are due to expire: from January 2017, hundreds of thousands of customers (in particular in Victoria and New South Wales) will receive considerably less for any energy exported to the grid, making the idea of storing excess energy for later use more attractive.

The excitement and interest isn’t just limited to residential solar PV owners though—across the energy industry there is an expectation that large batteries and other forms of energy storage will be installed at increasing rates. Many industry analysts predict that the rate at which energy storage is taken up will be greater than the rate at which solar PV was taken up at the same stage of technology maturity, suggesting that an energy storage boom may be imminent.

However, energy storage still remains a fairly expensive proposition and householders looking to install a battery can expect to spend $10,000 or more, even for relatively small systems. As with solar PV, these costs will come down with increasing uptake and technology developments, but for at least a couple of years the cost of a battery will be hard to justify in most cases. The same is true for many utility-level and large-scale energy storage projects.

Read the full article in ReNew 136.